NextGen Biocatalysts: KGOs

Fe(II)/ α -ketoglutarate dep. Oxygenases enable new reactions and productsvacross industries.

Complementarity. More selective than UPOs, more active than P450s

Bulk Availability. Cost-efficient production in E. coli up to industrial kg quantities

Proven scalability. Demonstrated at 400kg production scale (Xiao 2025)

Aminoverse promise. No IP lock-in, no license fees nor royalties

Tailored to your requirements

Our collection of 185 KGOs was computationally curated to increase hit chances and minimize screening efforts:

BioCarbon

- 38 wild type KGOs
- likely act on fatty acids, terpenes, alkaloids, steroids and similar substrates

AminoAcid Anh

- 42 wild type KGOs
- likely act on amino acids and similar substrates

XNA

- 22 wild type KGOs
- likely act on nucleosides, nucleotides and similar Panel substrates Collection of

Eureka

- 41 wild type KGOs
- perform unique chemistry without evident substrate scope Fe(II)- and a-ketoglutarate-dependent Oxyger to other KGO panels

Alkaloids

Steroids

Lactones

trans-3-OH-L-Pro

cis-3-OH-L-Pip

4-CI-Lvs

5-OH-Leu

5-methyluridine

Hydroxymethyluracil

Nucleo(s/t)ides

5-Formyluracil

Seq. Oxidation Halogenation

Ring formation

